FACULTY OF ENGINEERING B.E. III - Semester (AICTE) (Main & Backlog) Examination, July 2021

Subject: Mathematics – III (PDE, P & S)

Time: 2 Hours

Max. Marks: 70

(Missing data, if any, may be suitably assumed)

PART - A

Note: Answer any five questions.

(5x2 = 10 Marks)

- Form a partial differential equation by eliminating arbitrary constants a and b from z = (x + a)(y + b).
- Solve p tan x + q tan y = tan z.
- Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial y^2} = 0$.
- Apply the method of separation of variables to solve $u_x = u_y$.
- If a random variable X is uniformly distributed over (-a, a), find 'a' so that $P(X>1) = \frac{1}{2}$.
- Find the first moment μ_1 about mean of the series 3,6,8,10,18.
- Write normal equations to fit a curve of the form $y = a + bx + cx^2$.
- Prove that the correlation coefficient is the geometric mean of regression coefficients.
- Write the test statistic t to test of significance for single mean of small sample.
- 10 Write uses of F-test.

Note: Answer any four questions.

(4x15 = 60 Marks)

- 11 (a) Solve $x(y^2 z^2)p + y(z^2 x^2)q = z(x^2 y^2)$. (b) Solve pxy + pq + qy = yz by Charpit's method. 12 Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for a rectangular plate subject to the conditions

$$u(0,y) = 0$$
, $u(a,y) = a - y$, $\frac{\partial u}{\partial y}(x,0) = 0$, $\frac{\partial u}{\partial y}(x,a) = 0$.

- 13 (a) In a normal distribution, 31% of the items are under 45 and 8% of the items are over 64. Find the mean and standard deviation of the distribution.
 - (b) Define uniform distribution. Find the moment generating function of uniform distribution.
- 14 (a) Compute the rank correlation coefficient from the following data:

x :	85	60	73	40	90
y:	93	75	65	50	80

(b) The heights of a college students in a city are normally distributed with standard deviation 6 cms. A sample of 100 students have mean height 158 cms. Test the hypothesis at 5% level of significance that the mean height of college students in the college is 160 cms.

15 Fit a Poisson distribution for the following data and test the goodness of fit at 5% level of significance.

x:	0	1	2	3	4	5
y:	110	170	130	60	23	7

16 (a) Solve $p^2 + q^2 = z$.

(b) Find the solution of the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 y}{\partial x^2}$ subject to the conditions u(0,t) = u(l,t) = 0, u(x,0) = T (constant temperature), 0 < x < l, t > 0.

17 (a) The observations from an experiment are as given below:

77.	250			
<u>y.</u>	350	400	500	600
x:	61	26	7	2.6
				2.0

If y and x are connected by the relation $y = ax^b$, find the best possible values of a and b.

(b) Find the students t for the following variable values in a sample of eight, taking the mean of

