FACULTY OF ENGINEERING

B.E. IV - Semester (EE/Inst/CSE) (AICTE) (Main&Backlog) Examination,

October 2021

Subject: Mathematics - III (Probability and Statistics)

Time: 2 Hours

Max. Marks: 70

(Missing data, if any, may be suitably assumed)

PART - A

Note: Answer any five questions.

(5x2 = 10 Marks)

- State Baye's theorem.
- A random variable X has the following probability distribution

17.5	The state of the s	the second second	NAME OF THE PERSON	MEX. MODERNALIN	un.
X.	1	2	3	4	-
P(X)	1/10	1/5	3/10	2/5	-
	The state of the s	100	Per 1.05	470	

Find the mean of the distribution.

- 3 Average number of accidents on any day on a national highway is 1.8. Find the probability that the number of accidents is at least one.
- 4 Define Skewness of a distribution.
- 5 Write any two properties of the normal probability curve.
- 6 Find the variance of the uniform distribution
- 7 Two lines of regression are 7x 16y + 9 = 0, 5y 4x 3 = 0. Find T and T
- 8 Define type I and type II errors.
- 9 Write the assumptions for conducting t-test
- 10 Explain briefly F-test.

PART - B

Note: Answer any four questions,

(4x15 = 60 Marks)

- 11 (a) State and prove theorem of total probability.
 - (b) A continuous random variable X has the pdf $f(x) = \begin{cases} ax^{x}, & 0 \le x \le 1 \\ 0 & \text{elsewhere} \end{cases}$

(ii)
$$P\left(X < \frac{1}{4}\right)$$
 and

(iii)
$$P\left(X > \frac{1}{2}\right)$$

12 (a) Fit a binomial distribution to the following data:

T:	0	1	2	3	4	5
f:	2	14	20	34	22	8

(b) Calculate the first four moments about the mean for the following data:

1:	1	2	3	4	5	6	7	8	9
1:	1	6	13	25	30	22	9	5	2

- 13 (a) The marks obtained in Mathematics by the students in a class are approximately normally distributed with mean 62 and variance 36. If 3 students are selected at random, find the probability that at least one of them would score more than 80 marks.
 - (b) Find the mean and moment generating function of exponential distribution.

14 (a) Find the least square line y = a + hx for the following data:

X:	-2	-1	0	1	2
1:	1	2	3	3	4

(b) Intelligence test of two groups of boys and girts gave the following results.

Girls: F. =84. S.D. = 10, n, =121

Boys: F,=80, S.D. = 14, H,= 81.

is the difference between the standard deviations significant? Test at 5% level of significance.

15 The values of two random samples are given below.

Sample A 15 25 16 20 22 24 21 17 19 23
Sample B 35 31 25 38 26 29 32 34 33 27 29 31
Can we conclude that the two samples are drawn from the same population? Test at 5% level of significance.

- 16 (a) A dice is thrown twice and the sum of the numbers appearing is noted to be 8. Find the probability that the number 5 has appeared at least once.
 - (b) Find the variance of the normal distribution.
- 17 From the following data, calculate coefficient of correlation between X and Y and the two lines of regression equations.

X:	1	2	13	4	15	6	7	8	9
Y:	12	11	13	15	114	17	16	19	10

