Code No: D-2473/N/AICTE

FACULTY OF ENGINEERING

B.E. (CSE/CME) IV - Semester (AICTE) (Main) (New) Examination, September/October 2022

Subject: Mathematics-III

Time 3 Hours

Max. Marks: 70

Note: (i) First question is compulsory and answer any four questions from the remaining six questions. Each Questions carries 14 Marks.

- (ii) Answer to each question must be written at one place only and in the same order as they occur in the question paper.
- (iii) Missing data, if any, may be suitably assumed.
- 1. (a) Find the mean for the following probability distribution.

X	-1	0	1	2	3
f	0.3	0.1	0.1	0.3	0.2

- (b) If X follows a binomial distribution such that 4P(x = 4) = P(x = 2) and if n = 6, then find p the probability of success.
- (c) Find the variance of uniform distribution.
- (d) Find the rank correlation coefficient for the following data.

y 2 5 3 8 7	x	1	2	3	4	5
	У	2	5	3	8	7

- (e) Write any two applications at χ^2 test.
- (f) If A and B are two events such that $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$ and $P(A \cap B) = \frac{1}{2}$, then find that P(A|B).
- (g) Define exponential distribution.
- 2. (a) State and prove Bayes' theorem.
 - (b) A bag contains 3 black and 4 red balls. Two balls are drawn at random one at a time without replacement. Find the probability that the first ball selected is black if the second ball is known to be red.
- 3. (a) Find the variance and moment generating function of Poisson distribution.
 - (b) The first four central moments of a distribution are 0, 2.5, 0.7 and 18.75. Test the kurtosis of the distribution.
- 4. (a) Find the mean of normal distribution.
 - (b) If X is a normal variate with mean 8 and standard deviation 4, then find (i) $P(X \le 5)$ and (ii) $P(5 \le X \le 10)$.
- 5. (a) Fit the least square line y = a + bx for the following data.

X	-2	0	2	4	6	
У	1	3	6	8	13	

- (b) In two large populations, there are 30% and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations? Test at 1% level of significance.
- 6. Two samples are drawn from two normal populations. From the following data, test whether the two samples have the same variances at 5% level of significance.

7	two sample	3 1144				-	_	4			
-	Sample I	60	65	71	74	76	-82	85	87		
	Sample II	64	66	67	85	78	88	86	85	63	91
					B)	17					

7. (a) If
$$f(x) = \begin{cases} \frac{x}{6} + k \\ 0 \end{cases}$$
, $0 \le x \le 3$ is the p.d.f. of a random variable X, find

STI	tribution to the following data.									
*	X	0	1	2	3	4				
	f(x)	122	60	15	2	1				