OSMANIA UNIVERSITY FACULTY OF ENGINEERING

UNIVERSITY COLLEGE OF ENGINEERING (AUTONOMOUS) B.E. (CSE) IV-Semester (Main) Examinations August/September 2022

DESIGN AND ANALYSIS OF ALGORITHMS

Max. Marks: 70 Time: 3 hours

Note: i) Answer Question No. 1 (Compulsory) and answer any four questions from the remaining questions (2-7).

ii) Answers must be written in same order as they occur in the Question Paper.

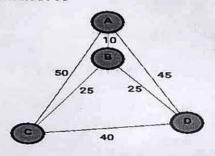
	iii) Missing data, if any, may suitably be assumed.			
		Marks	ВТ	СО
1. a)	What do you understand by worst-case time complexity.	2	1	1
b)	When do you apply dynamic programming to solve a problem.	2	3	3
28	What is minimum spanning tree. What are its advantages.	2	2	2
dy/	State cook's theorem.	2	1	7
ey/	What is satisfiability.	2	1	6
ø	Differentiate between Greedy and Dynamic programming approaches.	2	2	5
gy	Discuss briefly about asymptotic notations.	2	1	1
2. a)	How do you analyze in algorithm. What is basis of analysis. Explain.	10	2	1
<i>(</i> 6)	Solve the following recurrence relations and find the time complexity using substitution and Master's method a) $T(n)=7T(n/2)+18n2$ b) $T(n)=6T(n/3)+n2$ logn	4	3	3
3. a)	Write Knapsack algorithm.	6	2	4
Ŋ	Solve the following using Knapsack problem by Greedy method w = 60 kg, (w1, w2, w3, w4, w5) = (5, 10, 15, 22, 25), (p1, p2, p3, p4, p5) = (30, 40, 45, 77, 90).	8	3	4
4. 25	Explain Network flow Algorithms.	6	2	5
Js/	Write Non Deterministic algorithm for sorting and Construct a B-tree of order 4 with the following elements 10,20,30,40,50,60,70,80,90,100	8	3	6

5. a) What are tractable and intractable problems.

4 2 7

b) What are computability classes. Illustrate each with a suitable 10 2 7

6. a) Discuss about Approximation Algorithms.


8 2 8

b) Explain about NP-P SPACE.

6 2 8

7. a) Solve TSP for the following graph using Dynamic Programming 7 3 4

starting from node A

b) Write N-Queens algorithm. Illustrate with an example.

7 3 4

