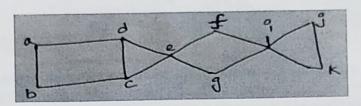
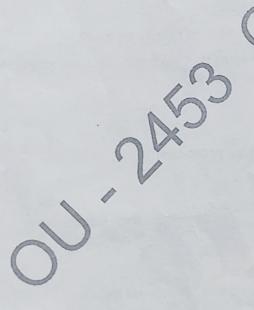
Code No: D-2372/N/AICTE

FACULTY OF ENGINEERING

BE (CSE) III - Semester (AICTE) (Main) Examination, March / April 2022


Subject: Discrete Mathematics

Time: 3 Hours Max. Marks: 70


Note: (i) First question is compulsory and answer any four questions from the remaining six questions. Each Questions carries 14 Marks.

- (ii) Answer to each question must be written at one place only and in the same order as they occur in the question paper.
- (iii) Missing data, if any, may be suitably assumed.
- 1 (a) Construct the truth table for $(p \rightarrow q) \leftrightarrow (\sim p \cup q)$
 - (b) What is the Cartesian product $A \times B \times C$, where $A = \{0, 1\}, B = \{1, 2\}$, and $C = \{0, 1, 2\}$?
 - (c) Let $f: R \to R$ and $g: R \to R$ where $f(x) = x^2 g(x) = x + 5$ Show that $f \circ g \neq g \circ f$.
 - (d) How many ways are these to select five players from 10 member tennis team to make a trip to match to another school.
 - (e) What is inhomogeneous recurrence relation?
 - (f) List out the properties where graph posses to qualify as tree?
 - (g) Define a wheel graph. A wheel graph has n+1 vertices, then determine the edges. Give example to support your answer
- 2 (a) Prove that √2 is irrational.
 - (b) Show that $\sim p$ is a valid conclusion from premises. $p \rightarrow r, r \rightarrow s, t \cup \sim s, \sim t \cup u, \sim u$.
- 3 (a) Let $f: R \to R$, be defined by $f(x) = \begin{cases} 3x 5; x > 0 \\ -3x + 1; x \le 0 \end{cases}$, then determine: 1. $f^{-1}, f\left(\frac{5}{3}\right)$ and $f\left(-\frac{5}{3}\right)$ 2. f^{-1} (0), f^{-1} (-6), f^{-1} (1)
 - (b) Prove that $(Q^+,*)$ where * is a binary operation defined by a*b=ab/5 is a group?
- 4 (a) Find the coefficient of x^{12} in $(1-4x)^{-5}$
 - (b) Solve the recurrence relation $a_n-7a_{n-1}+10a_{n-2}=0$ for $n\geq 2$ with initial conditions $a_0=10, a_1=41$
- 5 (a) Solve the recurrence relation $a_n 9a_{n-1} + 26a_{n-2} 24a_{n-3} = 0$ for, $n \ge 2$
- $3, a_0 = 0, a_1 = 1, a_2 = 10$ using generating function method.
 - (b) State and explain the properties of the pigeonhole principle.

6 (a) Draw and explain BFS and DFS algorithms for following graph.

- (b) Show that any graph with 4 or fewer vertices is planar.
- 7 Write short notes on any two:
 - (a) Algebraic Structure
 - (b) Euler Circuits and Hamiltonian graphs
 - (c) Isomorphic Graphs

