Code No: F-13612/N/BL/AICTE

FACULTY OF ENGINEERING

B.E. II Semester (AICTE) (Main & Backlog) (New) Examination, August/September 2024

Subject: Mathematics-II

Time: 3 Hours

Max. Marks: 70

Note: (i) First question is compulsory and answer any four questions from the remaining six questions. Each question carries 14 Marks.

- (ii) Answer to each question must be written at one place only and in the same order as they occur in the question paper.
- (iii) Missing data, if any, may be suitably assumed.
- 1. a) Find the rank of the matrix Find rank of the matrix $A = \begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$
 - b) If 1,2, -1 are the eigen values of matrix A, Find trace of matrix $B = A A^{-1} + A^{2}$.
 - ② Define exact differential equation and solve $e^x(\cos y \, dx \sin y \, dy) = 0$.
 - d) Find the orthogonal trajectories of the family of curves $y = ce^x$, c is parameter.
 - g) Solve y'' + 2y' + 2y = 0.
 - f) Evaluate $L[e^{2t}cos^2t]$.
 - g) Express the polynomial $3x^2 + 5x 6$ in terms of Legendre polynomials.
- 2. a) Test for consistency and solve 4x 3y 9z + 6w = 0, 2x + 3y + 3z + 6w = 6, 4x 21y 39z 6w = -24.
 - No) Verify Cayley- Hamilton theorem and find A^{-1} where $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & -1 \\ -2 & -1 & 1 \end{bmatrix}$.
- 3. a) Solve $\frac{dy}{dx} y = y^2(\sin x + \cos x)$.
 - b) Solve the differential equation $(3x^2y^3e^y + y^3 + y^2)dx + (x^3y^3e^y xy)dy = 0$.
- 4. a) Solve $(8D^2 14D + 5)y = 16sinx$.
 - by Solve $(D^2 + 4D + 4)y = e^{-2x} sinx$ using method of variation of parameters.
- 5. a) Evaluate $\int_0^\infty 2^{-9x^2} dx$, using gamma function.
 - b) Find the power series solution about x = 2 of the differential equation

$$4y'' - 4y' + y = 0$$
, $y(2) = 0$, $y'(2) = 1/e$.

- 6. a) Evaluate $\int_0^\infty te^{-3t} \sin t \, dt$, using Laplace transform.
 - b) Using Laplace transform method, solve y''' + 2y'' y' 2y = 0, y(0) = y'(0) = 0, y''(0) = 6
- 7. a) Solve $2x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} 3y = x^3$.
 - b) Evaluate inverse Laplace transform of $log(\frac{s+1}{s-1})$.